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Motivation

Detecting repeats in long biological sequences.

Adapted index structure.
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Notations

y is a sequence of length n on the
alphabet A.
$ is a terminator symbol.

Suffix tree

index structure;

all substrings represented;

edges labeled (begin position,
length);

leaves represent suffixes.

Suffix tree of tata$
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Ukkonen’s algorithm

On-line algorithm

Construction split into n phases which are also split into
extensions.

During the phase i, construction of the implicit tree of y[0..i]
from the one of y[0..i − 1].

During the extension j of the phase i, the suffix y[j + 1..i] is
added to the tree.

The last added substring is w = y[j + 1..i − 1].
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The 3 rules

Ukkonen’s algorithm is based on 3 rules expressed by Gusfield:

Rule 1

y[i]=y[j+1...i]w
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The 3 rules

Ukkonen’s algorithm is based on 3 rules expressed by Gusfield:

Rule 2

xw
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The 3 rules

Ukkonen’s algorithm is based on 3 rules expressed by Gusfield:

Rule 2

x y[i]

w
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Some properties

leaves are added in increasing order;

rule 1 does not need any treatment;

phase i begins at the extension j` + 1, where j` is the number
of the last created leaf;

phase i ends at the first extension j > j` such that rule 3 is
applied.
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Introduction to suffix vectors
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Introduction to suffix vectors
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Introduction to suffix vectors

Alternative data structure to
suffix trees

same information in reduced
space

introduced by K. Monostori in
2001

Root (0, 1) − (2, 1) − (13, 1)
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a a t t t a t t t a t t a $
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1|13|(2, 2) − (13, 1)
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Introduction to suffix vectors

Definition

A succession of boxes whose lines
contain:

the depth of the node;

the natural edge;

the edge list.

The root is a special box.

Notations
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Introduction to suffix vectors

Example

tatt is a substring of y ?
The root contains the edge (2, 1)
beginning by t leading to B2.
The edge (5, 1) by a leads to B5.
The natural edge begins by tt.

Root (0, 1) − (2,1) − (13, 1)
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a a t t t a t t t a t t a $
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3|4|(12, 2)
2|4|(5, 1)

3|2|(13, 1)
2|2|(13, 1)

1|13|(2, 2) − (13, 1)
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Compact a vector

Definition

A group of nodes is a set of nodes which are in the same box and
have exactly the same edges.
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Compact suffix vectors

3 rules of compaction of a box:

Rule A the node with depth d − 2 has the same edges as the
node with depth d − 1,

Rule B the node with depth d − 1 has the same edges as the
node with depth d and some extra edges,

Rule C the node with depth d − 3 has different edges to the
node with depth d − 2.

d−2

d−1

d−3

dRule B

Rule A 

Rule C
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Compacting V(aatttatttatta$)

=⇒

Root (0, 1) − (2, 1) − (13, 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a a t t t a t t t a t t a $

1|2|(5, 1)

7|6|(12, 2)
6|6|(12, 2)
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Root (0, 1) − (2, 1) − (13, 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a a t t t a t t t a t t a $

1|2|(5, 1) 7|6|(12, 2) 4

3|4|(12, 2)
2|4|(5, 1)

3|2|(13, 1) 2

1|13|(2, 2) − (13, 1)
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y
Monostori
−−−−−−→

O(n)
Extended vector

Monostori
−−−−−−→

O(n)
Compact vector
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On-line construction of a compact vector

Proposition

When an edge is added to the node w of depth d in a box Bp, this
edge will be added to all the nodes in Bp of depth smaller then d

in the group of nodes of w.
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On-line construction of a compact vector

Skip k − 1 extensions where k is the number of the nodes in the
group into the edge is added.
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Definition

A maximal repeat in a string is a substring such that there exist at
least 2 occurrences : a1ub1 and a2ub2 with a1 6= a2, b1 6= b2 and
a1, a2, b1, b2 ∈ A.

Example

y =aatttatttatta$
tta is a maximal repeat at positions 5 and 12.

Élise Prieur Compact Suffix Vectors 20/24



Introduction Suffix Vectors Computing maximal repeats Conclusion

Applying to suffix vectors

Proposition

The deepest node of each group of nodes represents a maximal
repeat.
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Root (0, 1) − (2, 1) − (13, 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a a t t t a t t t a t t a $

1|2|(5, 1) 7|6|(12, 2) 4

3|4|(12, 2)
2|4|(5, 1)

3|2|(13, 1) 2

1|13|(2, 2) − (13, 1)

Example

Boxes 0, 2, 5 et 7 are reduced:
a, t, tta, atttatt are maximal
repeats.
Box B3 is extended, the 2 lines have
different edges:
att, tt are maximal repeats.
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Conclusion

More economical construction of the compact suffix vector.

Linear method to compute maximal repeats with a compact suffix
vector.
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